Please wait a minute...
浙江大学学报(工学版)
材料科学与化学工程     
1-氯-1,1-二氟乙烷裂解制备偏氟乙烯
王刚, 郑海峰, 尹红, 袁慎峰, 陈志荣
浙江大学 化学工程与生物工程学系, 浙江 杭州 310027
Pyrolysis of 1-chloro-1,1 difluoroethane to vinylidene fluoride
WANG Gang, ZHENG Hai feng, YIN Hong, YUAN Shen feng, CHEN Zhi rong
Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(544 KB)   HTML
摘要:

在镍质裂解管中利用1 氯 1,1 二氟乙烷(HCFC 142b)空管裂解制备偏氟乙烯(VDF),探究进料流量和裂解温度对原料转化率和产物选择性的影响.结果表明:裂解温度为550~600 ℃,进料流量为015~060 mL/min时原料转化率较高,产物选择性较好,该工艺较适宜制备VDF.通过量子化学计算得到HCFC 142b脱HCl和脱HF反应过程的过渡态结构,计算600 ℃下脱HCl和脱HF反应的热力学数据和动力学数据,得到反应活化能为225.49和271.15 kJ/mol,计算结果与文献值较为接近,说明该计算方法可靠.

Abstract:

Pyrolysis of 1-chloro-1,1 difluoroethane (HCFC 142b) to vinylidene fluoride (VDF) was carried out in nickel tube. The effects of pyrolysis temperature and feeding flow on the conversion of HCFC 142b and the selectivity of VDF was investigated. Results showed that the process was suitable at  550-600 ℃ and the feeding rate of 0.15-0.60 mL/min,  the conversion of HCFC 142b and the selectivity of VDF were acceptable. The transition state structures of hydrogen chloride elimination and hydrogen fluoride elimination reaction were obtained by quantum chemistry calculation. The thermodynamic data and dynamic data of these two reactions under 600 ℃ were calculated as 225.49 and 271.15 kJ/mol. The calculation results of   active energy were close to the reported data, indicating that the calculation method is reliable.

出版日期: 2015-10-15
:  TQ 655  
基金资助:

浙江省重点科技创新团队计划资助项目(2011R50007).

通讯作者: 尹红, 女, 副教授.ORCID: 0000 0003 0742 3754     E-mail: yinh@zju.edu.cn
作者简介: 王刚 (1989-), 男,硕士生, 从事应用化学研究.ORCID: 0000 0002 9342 4771. E-mail: kjxywg@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王刚, 郑海峰, 尹红, 袁慎峰, 陈志荣. 1-氯-1,1-二氟乙烷裂解制备偏氟乙烯[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008 973X.2015.09.027.

WANG Gang, ZHENG Hai feng, YIN Hong, YUAN Shen feng, CHEN Zhi rong. Pyrolysis of 1-chloro-1,1 difluoroethane to vinylidene fluoride. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008 973X.2015.09.027.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008 973X.2015.09.027        http://www.zjujournals.com/eng/CN/Y2015/V49/I9/1812

[1] 张士林, 范孜娟. 聚偏氟乙烯树脂性能和加工应用[J]. 工程塑料应用, 2005, 33(4): 67-69.
ZHANG Shi lin, FAN Zi juan. Properties of polyvinylidene fluoride and its application [J]. Engineering Plastics Application, 2005, 33(4): 67-69.
[2] 钱伯章. 氟橡胶的国内外发展现状[J]. 中国橡胶, 2008, 24(7): 14-16.
QIAN Bo zhang. The development of fluorine rubber at home and abroad [J]. China Rubber, 2008, 24(7): 14-16.
[3] 李嘉. 氟橡胶市场现状与应用前景[J]. 中国石油与化工经济分析, 2013(1): 44-47.
LI Jia. Situation and application prospect of fluorine rubber market [J]. Economic Analysis of China Petroleum and Chemical Industry, 2013(1): 44-47.
[4] 朱顺根. 1 氯 1,1 二氟乙烷热解反应的动力学特征和热解方法[J]. 有机氟工业, 2004(2): 30-43.
ZHU Shun gen. Dynamic characterization and pyrolysis method of 1 chloro 1,1 difluoroethane [J]. Organo fluorin Industry, 2004(2): 30-43.
[5] EARLEY J J. Production of vinylidene fluoride:US, 3246041 [P]. 1966 0412.
[6] CHARLES B M, LYNBROOK N Y. Manufacture of fluoroolefins:US 2628989 [P]. 1953 02 17.
[7] STOVER A W. Pyrolysis of difluoromonochloroethane:US 2627529 [P].1953 08 23.
[8] DOWNING F B. Pyrolysis of chloro fluoro alkanes:US 2551573 [P]. 1951 05 08.
[9] 张在利, 曾本忠, 曾子敏, 等. 二氟一氯乙烷裂解生产偏氟乙烯的方法:CN 1428320 [P]. 2003 07 09.
[10] BARABANOV V G, VOLKOV G V. Method of synthesis of vinylidene fluoride: RU 1823419 [P]. 1996 6 10.
[11] 刘新民, 王兵, 荆海洋, 等. 用R142b裂解制备偏氟乙烯的方法和设备:CN 101003460 [P]. 2007 07 25.
[12] MAURICE M, JAMES E. Production of vinylidene fluoride:US 3246041 [P]. 1966 04 12.
[13] FRANCIS H, WALKER A E. Dehyrohalogenationof 1,1,1 trihaloethanes[J]. Journal of Organic Chemistry, 1965, 30(10): 3284-3285.
[14] ELSHELKH M Y. Catalytic process for the dehyrohalogenation of 1 chloro 1,1 difluoroethane: EP 0407711 [P]. 1991 01 16.
[15] GARDENER L E. Production of gem difluoroalkenes:US 3444251 [P]. 1969 5 13.
[16] SCOTT A P, RADOM L. Harmonic vibrational frequencies: an evaluation of Hartree Fock, Moller Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors [J]. Journal of Chemical Physics, 1996, 100(41): 16502-16513.
[17] HALLS M D, VELKOVSKI J, SCHLEGEL H B. Harmonic frequency scaling factors for Hartree Fock, S VWN, B LYP, B3 LYP, B3 PW91 and MP2 with the Sadlej pVTZ electric property basis set [J]. Theoretical Chemistry Accounts, 2001, 105(6): 413-421.
[18] EYRING H. The activated complex and the absolute rate of chemical reactions[J]. Chemical Reviews, 1935, 17(1): 65-77.
[19] GLENDENING E D, LANDIS C R, WEINHOLD F. Natural bond orbital methods [J]. Wiley InterdisciplinaryReviews ComputationalMolecular Science, 2012, 2(1): 142.
[20] JONES Y, HOLMES B E, DUKE D W. Threshold energies and substituent effects for unimolecular elimination of HCl (DCl) and HF (DF) from chemically activated CF2ClCH3 and CF2ClCD3  [J]. Journal of Physical Chemistry, 1990, 94(12): 4957-4963.

No related articles found!